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NOMENCLATURE

a rotor blade two-dlaenslonalllft curve slope

• A rotor disk area, _R 2

c rotor blade chord

cd rotor "bladesection dra_ coefficient (at zero llft)

CQ rotor torque coefficient,Q/% AR(_-LR)2

CT rotor thrust coefficient, T/_ A(A_R)2

initial thrust coefficient,W/_A(_) 2CTo

_T/"-s rotors_lll_-It
.J

Cx CT sin

Cs CT cos_
d _/_._
D helicopter parasite drag

• _IA'_
f helicopter equivalent parasite drag area

fG ground effect factor in induced velocity

fl(x,y) induced velocity curve

g acceleration due to gravity

go d_o_
h helicopter vertical position coordinate (measured downward

fro_ the initial _!titude)

ho helicopter altitude above ground at power loss ,,_

hf vertical velocity at ground contac,_ i i

Ib rotor blade flap inertia _

IR total rotor rotatio_l inertia, _Ib i _:
J optimal control cost function i

1 v/r&R :',•
M helicopter mass _ ':

N number of blades _ :_

ns stall l_raaeter '!

nz helicopter vertical load factor i_ ,

Q rotor torque
R rotor blade radius

t time

T rotor thrust
&
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_ v rotor induced velocity _.

_ _ ° Vh (T/2_A) ½

" Vf helicopter velocity at ground contact

• I. W helicopter gross weight ':

! Wx weighting factor in J, on ho. izontal velocity relative to _
vertical velocity

x helicopter horizontal position coordinate
F

x vertical velocity parameter in inflow curve

_f horizontal velocity at ground contact il
y horizontal velocity parameter in inflow curve

A

} :"

• o_ angle of rotor thrust vector from vertical

rotor Lock number, _acR4/Ib

angle of helicopter velocity from hozizontal, tan-t(-h/_)

_w rotor collective pitch

_ _ empirical factor on induced velocity "

_' _ rotor inflow ratio (tip-path-plane reference) _.

rotor advance ratio (tip-path-plane reference) :;

air density

q- rotor solidity ratio, Nc/wR _:

"fi induced velocity time lag

A_ rotor rotational speed

_-A, initial value of rotor rotational speed

( )o Initial value

( )" dC )ldt :
( )" a(

.?
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! HELICOPTER OPTIMAL DESCENT AND LANDING

i _ AFTER POWER LOSS

Wayne Johnson*

" Ames Re earch Center
and

: i Ames Directorate, USAAMRDL

I

SUM_RY

An optimal control solution is obtained for the descent and landing

of a helicopter after the loss of power in level flight. The model considers

! the helicopter vertical vel¢city, horizontal velocity, and rotor speed;

; and it includes representationsof ground effect, rotor inflow time lag,

pilot reaction time, rotor stall, and the induced velocity clzrvein the

vortex ring state. The control (rotor thrust magnitude and direction)

required to minimize the vertical and horizontal velocity at contact with

,i the ground is obtained using nonlinear optimal control theory. It is found

that the optimal descent after power loss in hover is a purely verti_l

flight path. Good correlation, even quantitatively, is found between the

calculationsand (non-optimal)flight test results, The optimal control

solution is thus a consistent and accurate metho_i_ ,r comparing and evaluating

the Power-off descent characteristicsof various he..copter designs.

INTRODUCTION

I Good autorotation characteristicsduring descent after power loss
are essential for a useful and safe helicopter design. While it is known

i that the helicopter rotor has a minimum descent rate in vertical autorotation

abo-t the same as a _rachute of equal size, there are other questions which

require consideration. First, the helicopter rotor is a rather small parachute,

so the ideal descent rate can be fairly high (V _ 1.16(T/A)} m/sec, where

T/A is the disk loading in kg/m2). This high basic descent rate increa_-s

=,

*Research Scientist, Large Scale Aerodynamics Branch, NASA-Amos Research Center
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_ _ the importance of other parameters in the power-off landing maneuver,

" Secondly, It is necessary to fly the helicopter in a manner to achieve

the least descent rate, and most importantly to flare near the ground so

: _ that the helicopter touches down with vertical and horizontal velocities

as nearly zero as possible.

_ It is desirable to have in the preliminary design process a means

_ of assessing the influence of basic parameters on the helicopter autorotation

_ characteristics. A number of elementary autorotation indices have been

developed, generally based on the ratio of the rotor kinetic energy to

the helicopter power required, KE/P (KE i_ the energy available during

_ _ the descent, and P is the rate of energy decrease just after the loss of

__ _ engine power, thus a high ratio of K_/P is desired), The problem Is more

complex really, with many parameters of the helicopter design influencing

the autorotation characteristics. A difficulty lies in the necessity for

: _ fly.rig the helicopter to the ground, which requires the choice of a control

._ } schedure. A poor choice for the helicopter control can easily result in .

an u_cceptable landing, thus obscuring the influence of the design p_rameters.

'_ i Therefore this report considers the use of nonlinear optimal control theory

to establish the best control schedule, and thereby eliminate

the influence of the control choice. The result is a consistent method

for com_rlng and evaluating the power-off landing characteristics of

i variou_ h_llcopter designs

;

t,,
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EQUATIONS OF MOTION
8

The optimization problem to be formulated is to find the control after i

powe.-loss to arrive at the ground with minimum velocity, given the

helicopter initial altitude ho, flight state, and basic parameters. The
helicopter is assumed to be in equilibrium level flight at the instant of power

loss, with rotational speed IO-. , rotor loading (C_)o , and forward 1i

speed _o. The basic parameters of the helicopter design include the Lock ,:

number _ , the rotor radium R, and the solidity ratio _" . The aircraft J

position is defined by tb_ coordinates h and x, respectively vertical and

horizontal (see figure I). It is convenient to measure h downward, so

h = 0 at the initial altitude and h - ho at the ground.

The optimal control problem is best solved using an indeper_ient i:

variable which has a fixed end point. Thus the independent variable for :

the present problem must be the h_ight h rather than time, since the

arrival at the g_ound is defined by h = ho at an unknown time. The change

of_r_blesieac_.plis_,dus_ d( )/dr-_d( )/dh,or( )"-_ ( )'. '-_
The numerical integrationwhich is required to solve the problem is still

best done with respect to tiu however (see below).

For the control variables, the magnitude and direction of the

rotor thrust are used, specifically the thrust coefficient CT and the

angle of the thrust vector to the vertical o< (see figure I)_ It is i_
convenient to express the problem in terns of the vertical and horizontal ....

components of CT, Cz - CT cos_ and ©x = CT sin_ respectively. The _ -_

collective pitch control required to obtain this thrust may be then obtained ,i __
/

from the blade elem_n_ theory empresalon

&cv

@-_ = __

It is not possible %o obtain the longitudinal cyclic control from o_ without

- considering the helicopter pitch attitude and the rotor flapping also! the

primary interest here is in the flight path anyway. !_

:i
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i _ : The equations of motion considered to describe the helicopter descent _ "_ _ _
after power loss are those for vertical descent velocity h, horizontal '

} . velocity _, rotor speed _-, and induced velocity v. A separate differential _

equation is used for the induced velocity partly to allow consideration of

a time lag in the inflow response, and partly to simplify the incorporation

of the inflow curve (including ground effect) in the model. Vertical _

force equilibrium (see figure 1) gives,

Mh = W - T cos_ + D sin_

orsinceW Ngand
: "" _ (I- --_, _" --

r Horizontal force equilibrium gives

° M x" = T sin_ - D cos_

_ or

The helicopter parasite drag will be defined by an equivalent area f,
2 • -2 .2

such that D = _V fl then D sin_ = -_h(h +x ) f, and D cos_ _

_x(h + x ) f (see figure I). R._tor torque equilibrium after the loss

of engine power is8

or

": where Q is the rotor aerodynamic torque, given by

(reference *). Here C_- s is the rotor stall limit (with ns a large number,

e.g. ns - 20, so the profile torque greatly increases when the loading is above

CT/_ ). The rc_or advance ratio _A and inflow ratio _ are given by



_ik I I IIIIllln .... ' ' ' ='= --

The rotor induced velocity v is given by a differential equation which

includes a time lag _ ,

_ +v = KVhflfG I
Or '

The steady state solution is thus v = W.VhflfG.

2 = T/2 A, _- is an empirical factor (typically K = 1.15),Here vh

fl is the inflow curve, and fG is the effect of the ground.

For the inflow curve, the following expression is useds :

¢

where the parameters x and y are defined by {

__ _e_s_

e

'3 = e_,,= ;._s_,,,.,,,+../._=_ ;_

-.5-
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The first expression for fl is the usual momentua theory result (ref. 1)I the

_" second expression is an empirical approximation for the vortex ring | !

state (where the momentum theory breaks down). The region of roughness

_!; in the vortex ri_ state is defined approximately by (2x+2)2+y2_ l.

i To account for ground effect, the following expression is used (ref. 2):

: I- ------
#

• Here z is _he rotor height above the grou_, z - ho - h + z° (z° is the

._: rotor helght for the aircraft on the ground) l and _ is the angle of the
wake to the ground,

Ii
DI_NSIONLESS EQUATIONS

Now the equations will be made dimensionless using the quantities

!_ _ , .-_-o, and R. The foyer de,Tees of freedom are defined as follows,

Y

Ia._dt_ control variables are Cz - CT cosc_ and C = CT sin_ . The

four differential equations are then,

1977019123-010



Fer fI and fG in the inflow equation, the followir_ qusnttties are requtreds

X = _ _Jc_
C ._.TM,.., I._-_"

Finally, the tnit_l conditions (_or level flight) are d - O, • -_0 ,

- 1, and _- Ro -Vo//_a sth- O.

CRITERION

The opt_alution problem _s to arrive &t the ground with min_au_ ._.

vertie_l and horizontal velocity. Thus a quadratic cost f_wtion of

the followi_ fore is used m
• t

+ ,,,,q)

1977019123-011



1977019123-012



_" "'_ '.L _ ' - '-'" ' :-;.JL ", ..... " . ..... •...... _ _ .....,........................
J,

_'i . NONI-INEAROPTIMAL CONTROL

: _ Consider a system defined by the nonlinear dlffe_._ntialequation ,

x a(x, h), where _ is the state vector,_ is the control vector,. _ U 0

i and h is the independent variable, and a cost function J _' b(_, =

= . U, h) dh.

It is assumed that the initial conditions _(hi) are given, and that hi !

and hf are fixed, The optimal control problem it to find _(h) +.ominimize J. _, _,

The solution (see reference 3) is defined by the followir_ _t of equations,

/

r - - ? - :
!r ,_

-t

with_ou._ co.dltlonsx(hi)- xi andp(hr)= O. "
! .

I For simple problems, the equation _H/_u_ - 0 t_ solved d_rectly :for u as a function of _, _, and hl and _ is substituted into the first

I two equations. The differential equations arc then integrated, using theboundary conditions to eliminate integration constants. Then the solution

for _ is the optimal l_th, and _ gives the optimal control law _(h).

The present problem is too complex for such a procedure, so a

steepest descent algorit_ is used to solve the two point boundary value

p___blen (reference 3). A cycle in the algorithn consists of the following

ste_. A current estimate of the optimal control law, u , is avail_ble.

The differential equstton _¢ - _ is Int_grate_ forward from hi to hf using

i _ and the initial consitions on _. Next the differential equation- - % H/hT is inte_ra_,i ha_ from hf _o hi using x, u , a_d

the final coadltlons on p. Finally, (_ H/Ja) is evaluated using x, _,

and _l'_l and the control is _ncrenented by _:

• I,. _ ,_ I_ _., . "

where _ is a _tep else. chosen (by trial and error) such that _.._ solution

-9- _.,'"
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converges fast enough without overshooting. This p_ocess is repeated

I until the solution converges to the optimum, as indicated by the cost i
J approaching a minimum. Such a st_.epest descent procedure has the advantage

- of not being sensitive to the initl&! guess for the control; the convergence

slows down as the minimum is apl_ache_ however.

OPTIMAL CONTROL PROBLEM

The optimal control 1_oblem for the Ix)wer-off de_cent and landlng

of a helicopter is obtained by applying nonlinear optimal control theory

to the dimensionless equations given _bove. The formulation using h as the

independent variable is required since the final height is specified, rather

than %he fi_'_ltime. It iF,still preferable to do the actual numerical 1
-

integration using time as the independent variable however, to elimirnte

the singularity which occurs at d = 0 (such as at the start of the maneuver) _ _
is h is th_ inQ,'_endent variable. Therefore after the differential equation _ :

for _is opbtained, the coordinate transformation is made back to t, using !_

d( )" = ( )" . It is also necessary then to integrate h = d/_R to obtain _ '_

the proper variable h (and also _ = eF_R to obtain x(t) ). The resulting system

_ of equations for the opti_al control problem is then as follows. 4
!

-10-
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and _.he aatr_.ces B and C are doff.ned as folloes,

-11-
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tThese equations are solved by the steepest descent method outlined

above• The pilot reaction time tp is included by constraining the collective

• pitch to have the initial value for t < _. Then the contxol is given by

I• {r

Assuming _ is unchanged for t < tp, then CJC z = = (½f/A/ 2)/CTo•
Typically tp _ .75 sec (although handlir_ qualities _pecificat'on_ may

require the use of a larger value).

_SCEI_P FROM HOVER

Consider the case of optimal descent after power loss in hover,

hence with initial condition _= O. The solution of the above equations

will be shown to be Cx - 0 and • = 0 (o< = 0 and _ = 0).

= = fI =Assuming Cx e - O, it follows that _a- O, y O, _ /By 0

(i.e. _.1_" 0 at _ = 0), and fG is a function of h only. The

differential equation for • becomes _ - O, with solution • - constant = 0

(using the initial condition e = _ao = 0). The differential equation above for

v . go(½_/CTo)Pe,which has solutionPe becomes then Pe

Pe PeCho)exp[got l^

or p "0 since the final conditions on'give Pe(ho)=O. Then _H/_C x =

. e 2. d
gOtt,_ / CTo)Pe I O, as required for the optimal solution. The remaining problem

has then only three degrees of freedom (d, _ , and _ ), one control variable

(Cz = CT) , and threee components of ¢ (Pd' P_ ' and p_ ). While eliminating

e, Cx, and Pe from the problem is a significant simplification, it is still

neceszary to integrate numerically and ice1_te to find the optimal solution•

Thus the optimal control solution for dest.ent from howver after power

loss is a purely vertical flight path. The same conclusion was reached from
!

the flight tests reqorted in reference 4, although in practice a small amount

• of forward speed is required, both to avoid the vortex ring state during

flare and to keep the landing point in sight.
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RESULTS AND DISCUSSION

The optimal descent of a helicopter after power loss has been ;

calculated for a number of cases. Because it is found both by flight

tests and from calculations that an initial forward velocity greatly

_mproves the autorotation characteristics,results are given here only ,:

for descent from power loss in hover (which as found above involves !_

a purely _ertical flight path). The helicopter considered is one for i

which flight test data are available. Three values of the rotor Lock _

nuzbor are considered, from _= 4.5 (the standard rotor) to _ = 2.6

(a rotor with heavier blades, investigated specifically for better

autorotation characteristics). Figure 2 shows _he vertical velocity at , _-

the instant of contact with the ground, after optimal descent from power

loss in hover at varous altitudes. These calculations are in agreement

with the flight test results. Specifically, it was found in reference _

that the autorotation characteristicsgreatly improved for the heavier

rotor (the autorotation charactsrlsticsfor the helicopter with _ = 4.5 q _

are poor in this altitude range, while the characteristicsof the helicopter _

with _ = 2.6 were found to be very good)! and the critical height with /
i

- 2.6 aboutho -

Figure 3 presents in detail the optimal solution for power-off

descent from hover at an altitude of ho = 3On. Figure 3(a) gives the !

collective pitch control required as a function of time (note that a pilot

reaction time of .75 sec is used). These results a_ain agree generally , ,_
with reference 4, which found in flight tests that the collective should be

dropped immediately,followed by a gradual increase for flare (in figure _ :

3(a) the flare begins when the helicopter is about 20m above the ground)•

Figure 3(b) shows the rotor C_s- as a function of altitude (the control

variable actually used in the solution procedure), A stall limit of _

O_" s " .15 was used, which, results in a leveling off of the control

Just before it reaches that value! the high torque due to rotor stall , _

greatly slows down the rotor, and thus values of C___ above stall are ' _'i;'_"
not called for until Just before ground contact. Figure 3(c) shows the

helicopter vertical load factor (n z - _ C_ _ + _%)A _ C_ P,p_/_o), ' ,

-15- _ _
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figure 3(d) shows the rotor speed, as a fraction of the initial value| and

figure 3(e) shows the vertlcal descent velocity (the rotor is operating

in the windmill brake state w_:enthe velocity is increaslr_,,an_ in the

• vortex ring state at the end of the maneuver when the velocity is decreasing).

Finally, figure 3(f) presents the flight path for the optimal descent;

note that the principal influence of Lock number is on the final portion of

the flare for these cases, where the extra kinetic energy in the heavier

rotor allows a greater reduction in velocity.

Figures 4 and 5 _resent a comparison between flight test results

(unpublisheddata from the program reported in reference 4), and the

calculated opt!_al power-off descent from hover. An optinal flight path

wa_ not flown in the tests of course, and in addition some forward speed

and cyclic flare were invQlved. Even so, the correlation is qualitatively

good. The most important discrepancy is that the rotor speed in the flight

tests does not initially decrease as fast as in the calculations. Examining

the flight test data, it is found ho.ever that the engine torque does not

decrease to zero immediatelyafter the throttle chop! in fact, _e torque

remains above 25% of full power until the helicopter has descended about I_

15m. Adding to the analytical model an exponential lag in the engine

power drop greatly inproves the correlation in figures 4 and 5. While

a_ain one should not look for too much correlation here, the lower vertical

load factor in the flight tests during the collective flare suggests that

the ground effect might be stronger than was used in the model, perhaps

due to the helicopter vertical velocity (the cyellc flare may be influencing

the measured nz also however).
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'_'i An optimal control solution has been obtained for the descentand landing of a helicopter after power loss. A comparison with flight

test results shows sufficient correlation, even quantitstively, to verify
the basic features of the model. The Influences of parameters such as "_

k

eltitude end Lock number are correctly given, end the proper charactsriatics _ :.
of the control technique are obtained. This model should thus prove to be . .i

a useful tool for evaluatlng and COml_rlng the power-off landing

characteristics of various helicopter deeigr_.

i

i :
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Figure 3(f). Helicopter altitude. '
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